北京中仪友信科技有限公司新版网站
就是要仪器
 
 
 
 
 
 
 
 
搜 索
提供以下仪器仪表:烟气分析仪,万用表,激光测距仪,兆欧表,涂层测厚仪,数字示波器,红外测温仪,电子分析天平
全国销售热线:010-57798167   节假日电话:13261366561
 
技术信息搜索
范  围:
关键词:
 
分 类 导 航
 基础仪器仪表
 周边环境检测
 电子元件测试
 电力测量分析
 安全规则检测
 通讯类-无线电
 实验分析测试
 灵敏度传感器
 气体检测分析
 水处理及分析
 测绘无损检测
 专业工具类
 
联 系 我 们


 工作时间:
 周一至周六 8:30-18:00

 北京总部
 电话:
 010-57798167 010-51299017
 节假热线:
 13261366561
 售后维修:
 010-51650143
 传真:
 010-60235563(销售部)
 地址:
 北京大兴区兴华大街盈润大厦2-410


 南京分部(专销江苏市场)
 电话:
 025-85792417 025-85750817
 13851494890
 传真:
 025-83266117
 地址:
 栖霞区文范路9号康桥圣菲门面房4号217室  

 上海分部
 电话:
 021-51873817  传真:
 021-62123182
 地址:
 浦东新区周浦镇关岳路
 周东村417号-4

 重庆办事处
 电话:
 023-89236017
 传真:
 023-89236017
 地址:
 重庆市九龙坡区渝州路4号  一城精英国际大厦14-3号

 佛山支援点
 电话:
 0757-86188531
 传真:
 0757-86188531
 地址:
 佛山市禅城区平远横街华景苑
 26栋505室

 深圳支援点
 电话:
 0755-61281752
 传真:
 0755-61281752
 地址:
 深圳市宝安区西乡镇乐群村3巷2号


代理商售后维修区域:北京-上海-浙江-广东-河南-杭州-郑州-广州-深圳-佛山-惠州-厦门-汕头-台湾-香港-天津-西安-宝鸡-杭州-温州-常州-无锡-苏州-南京-镇江-扬州-南通-合肥-徐州-常熟-石家庄-太原-呼和浩特-沈阳-长春-哈尔滨-南京-合肥-福州-南昌-济南-郑州-武汉-长沙-广州-南宁-海口-成都-贵阳-昆明-拉萨-西安-兰州-西宁-银川-乌鲁木齐-杭州-沈阳-长春-哈尔滨-济南-武汉-广州-南宁-成都-西安-大连-宁波-厦门-青岛-深圳-杭州-淮安-连云港-昆山-嘉兴-湖州-秦皇岛-邯郸-邢台-保定-张家口-承德-廊坊-呼和浩特-包头-鞍山-大庆-锦州-铁岭-盘锦-湛江-萧山-辽宁-淄博-宁夏-绵阳-云南-朝阳-陕西-青海-北海-唐山-吉林-苏州-昆山-无锡-镇江-常州-连云港-淮安-淮阴-盐城-扬州-徐州-宜兴-江阴-南通-扬州-上海-滁州-内蒙古-新疆有销售.北京亦庄开发区,天津滨海开发区,秦皇岛经济开发区,太原经济开发区,呼和浩特经济开发区,沈阳经济开发区,营口经济开发区,大连经济开发区,长春经济开发区,哈尔滨经济开发区,虹桥经济开发区,漕河泾开发区,连云港开发区,南通开发区,昆山开发区,南京开发区,杭州开发区,萧山开发区,温州开发区,宁波开发区,芜湖开发区,合肥开发区,福州开发区,福清融侨开发区,东山开发区,南昌开发区,威海开发区,烟台开发区,青岛开发区,郑州开发区,武汉开发区,长沙开发区,萝岗区开发区,广州南沙开发区,惠州大亚湾开发区,湛江开发区,南宁开发区,重庆开发区,成都开发区,贵阳开发区,昆明开发区,拉萨开发区,西安开发区,兰州开发区,西宁开发区,银川开发区,乌鲁木齐开发区,石河子开发区,金桥出口加工区,苏州工业园,宁波大榭开发区,厦门海沧投资区,海南洋浦开发区。

 
 请与北京电话咨询

 
最 新 产 品
 
万用示波表数字示波器模拟示波器虚拟示波器
波形示波器信号发生器函数发生器
示波器的使用说明和功能--示波器的使用方法

[ 2009-8-17 ]  [转载请注明来源:就是要仪器网 www.94117.net]

示波器的使用方法

在家电维修的过程中使用示波器已十分普遍。通过示波器可以直观地观察被测电路的波形,包括形状、幅度、频率(周期)、相位,还可以对两个波形进行比较,从而迅速、准确地找到故障原因。正确、熟练地使用示波器,是初学维修人员的一项基本功能。

  虽然示波器的牌号、型号、品种繁多,但其基本组成和功能却大同小异,本文介绍通用示波器的使用方法。  

一、面板介绍
     1.亮度和聚焦旋钮

     亮度调节旋钮用于调节光迹的亮度(有些示波器称为"辉度"),使用时应使亮度适当,若过亮,容易损坏示波管。 聚焦调节旋钮用于调节光迹的聚焦(粗细)程度,使用时以图形清晰为佳。

     2.信号输入通道 

     常用示波器多为双踪示波器,有两个输入通道,分别为通道1(CH1)和通道2(CH2),可分别接上示波器探头,再将示波器外壳接地,探针插至待测部位进行测量。

     3.通道选择键(垂直方式选择)

     常用示波器有五个通道选择键:
    (1)CH1:通道1单独显示;
    (2)CH2:通道2单独显示;
    (3)ALT:两通道交替显示;
    (4)CHOP:两通道断续显示,用于扫描速度较慢时双踪显示;
    (5)ADD:两通道的信号叠加。维修中以选择通道1或通道2为多。

     4.垂直灵敏度调节旋钮 

     调节垂直偏转灵敏度,应根据输入信号的幅度调节旋钮的位置,将该旋钮指示的数值(如0.5V/div,表示垂直方向每格幅度为0.5V)乘以被测信号在屏幕垂直方向所占格数,即得出该被测信号的幅度。

     5.垂直移动调节旋钮 

     用于调节被测信号光迹在屏幕垂直方向的位置。

     6.水平扫描调节旋钮 

     调节水平速度,应根据输入信号的频率调节旋钮的位置,将该旋钮指示数值(如0.5ms/div,表示水平方向每格时间为0.5ms),乘以被测信号一个周期占有格数,即得出该信号的周期,也可以换算成频率。

     7.水平位置调节旋钮

     用于调节被测信号光迹在屏幕水平方向的位置。

     8.触发方式选择

     示波器通常有四种触发方式:

    (1)常态(NORM):无信号时,屏幕上无显示;有信号时,与电平控制配合显示稳定波形;

    (2)自动(AUTO):无信号时,屏幕上显示光迹;有信号时与电平控制配合显示稳定的波形;

    (3)电视场(TV):用于显示电视场信号;

    (4)峰值自动(P-P AUTO):无信号时,屏幕上显示光迹;有信号时,无需调节电平即能获得稳定波形显示。该方式只有部分示波器(例如CALTEK卡尔泰克CA8000系列示波器)中采用。

     9.触发源选择 

    示波器触发源有内触发源和外触发源两种。如果选择外触发源,那么触发信号应从外触发源输入端输入,家电维修中很少采用这种方式。如果选择内触发源,一般选择通道1(CH1)或通道2(CH2),应根据输入信号通道选择,如果输入信号通道选择为通道1,则内触发源也应选择通道1。

二、示波器测量方法
  1.幅度和频率的测量方法(以测试示波器的校准信号为例)
    (1)将示波器探头插入通道1插孔,并将探头上的衰减置于"1"档;
    (2)将通道选择置于CH1,耦合方式置于DC档;
    (3)将探头探针插入校准信号源小孔内,此时示波器屏幕出现光迹;
    (4)调节垂直旋钮和水平旋钮,使屏幕显示的波形图稳定,并将垂直微调和水平微调置于校准位置;
    (5)读出波形图在垂直方向所占格数,乘以垂直衰减旋钮的指示数值,得到校准信号的幅度;
    (6)读出波形每个周期在水平方向所占格数,乘以水平扫描旋钮的指示数值,得到校准信号的周期(周期的倒数为频率);
    (7)一般校准信号的频率为1kHz,幅度为0.5V,用以校准示波器内部扫描振荡器频率,如果不正常,应调节示波器(内部)相应电位器,直至相符为止。
     2.示波器应用举例(以测量788手机13MHz时钟脉冲为例)
     手机中的13MHz时钟信号正常是开机的必要条件,因此维修时要经常测量有无13MHz时钟信号。步骤如下:
     (1)打开示波器,调节亮度和聚焦旋钮,使屏幕上显示一条亮度适中、聚焦良好的水平亮线;
     (2)按上述方法校准好示波器,然后将耦合方式置于AC档;
     (3)将示波器探头的接地夹夹在手机电路板的接地点,探针插到788手机CPU第脚;
     (4)接通手机电源,按开机键,调节垂直扫描水和平扫描旋钮,观察屏幕上是否出现稳定的波形,如果没有,一般说明没有13MHz信号。


说明和功能

  我们可以把示波器简单地看成是具有图形显示的电压表。
  普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。

  示波器和电压表之间的主要区别是:

  1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。

  2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。

显示系统

  示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。

图1 阴极射线管图

  电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。

  在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。

  如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用。P31材料发射绿光,而P7材料发光的颜色为黄绿色。

  将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹。

  影响屏幕的控制机构有:

—辉度

  辉度控制用来调切波形显示的亮度。本书中用作示例的示波器所采用的电路能够根据不同的扫描速度自动调切辉度。当电子束移动得比较快时,荧光物质受到激励的时间就变短,因此必须增加辉度才能看清轨迹。相反,当电子束移动缓慢时,屏幕上的光点变得很亮,因此必须减小辉度以免荧光物质被烧坏。从而延长示波管的寿命。

  对于屏幕上的文字部分,另有单独的辉度控制机构。

—聚焦

  聚焦控制机构用来控制屏幕上光点的大小,以便获得清晰的波形轨迹。有些示波器,例如本书用作示例的示波器上,聚集也是由示波器自己进行最佳控制的,从而能在不同的辉度和不同的扫描下保持清晰的波形轨迹。另外也提供手动调节的聚集控制。

—扫描旋转

  这个控制机构使X轴扫描线和水平标尺线对齐。由于地球的磁场在各个地方是不同的,这将会影响示波管显示的扫描线。扫迹旋转功能就用来对此进行补偿。扫描旋转功能是预先调好的,通常只需在示波器搬动后再行调节。
—标尺照明

  标尺亮度可以单独控制。这对于屏幕摄影或在弱光线条件下工作时非常有用。

—Z调制

  扫描的辉度可以用电气的方法通过一个外加的信号来改变。这对于由外部信号来产生水平偏转以及使用X-Y显示方式来寻找频率关系的应用中是十分有用的。

  此信号输入端通常是示波器后面板上的一个BNC插座。

1.2 模拟示波器方框图

  CRT是所有示波器的基础。现在我们已经对它有所了解。下面我们就看一看示波管是怎样作为示波器的心脏来起作用的。

  我们已经看到,示波器有两个垂直偏转板,两个水平偏转板和一个电子枪。从电子枪发射出的电子束的强度可以用电气的办法来加以控制。

  在上术基础上,再增添下面叙述的电路就可以构成一个完整的示波器(见图2)

图2 模拟示波器方框图
  示波管的垂直偏转系统包括:
  —输入衰减器(每通道一个)
  —前置放大器(每通道一个)
  —用来选择使用哪一个输入通道的电子开关
  —偏转放大器
  示波器的水平偏转系统包括:时基、触发电路和水平偏转放大器
  辉度控制电路用电子学的方法在恰当的时刻点亮和熄灭扫迹。
  为使所有这些电路工作,示波器需要有一个电源。此电源从交流市电或者从机内或外部的电池获取能量,使示波器工作。任何示波器的基本性能都是由它的垂直偏转系统的特性来决定的,所以我们首先来详细地考察这一部分。
1.3 垂直偏转
灵敏度
  垂直偏转系统对输入信号进行比例变换,使之能在屏幕上表现出来。示波器可以显示峰峰值电压为几毫伏到几十伏的信号。因此必须把不同幅度的信号进行变换以适应屏幕的显示范围,这样就可以按照标尺刻度对波形进行测量。为此就要求对大信号进行衰减、对小信号进行放大。示波器的灵敏度或衰减器控制就是为此而设置的。
  灵敏度是以每格的伏特数来衡量的看一下图3可以知道其灵敏度设置为1V/格。因此,峰峰值为6V的信号使得扫迹在垂直方向的6个格内偏转变化。知道了示波器的灵敏度设置值和电子束在垂直方向扫描的格数,我们就可以测量出信号的峰峰电压值。
  在多数的示波器上,灵敏度控制都是按1-2-5的序列步进变化的。即灵敏度。设置颠倒为10mV/格、20mV/格、50mV/、100mV/格等等。灵敏度通常是用幅度上升/下降钮来进行控制的,而在有些示波器则是用转动垂直灵敏度旋钮来进行。
  如果使用这些灵敏度步进不能调节信号使之能够准确的按照要求在屏幕上显示,那么就可以使用可变(VAR)控制。在第6章我们将会看到,使用标尺刻度来进行信号上升时间的测量就是一个很好的例子。可变控制能够在1-2-5的步进值之间对灵敏度进行连续调节。通常当使用可变控制时,准确的灵敏度值是不知道的。我们只知道这时示波器的灵敏度是在1-2-5序列的两个步进值之间的某个值。这时我们称该通道的Y偏转是未校准的或表示为"uncal"。这种未校准的状态通常在示波器的前面板或屏幕上指示出来。

  在更现代化的示波器,例如我们用作示例的示波器,由于彩用了现代先进的技术进行控制和校准。因此示波器的灵敏度可以在最小值和最大值之间连续变化,而始终保持处于校准状态。

  在老式的示波器上,通道灵敏度的设置值是从灵敏度控制旋钮周围的刻度上读出的。而在新型的示波器上,通道灵敏度设置值清晰地显示在屏幕上,如图3所示,或者用一个单独的CD显示器显示出来。

图3 在灵敏度为1v/格的情况下,峰峰值为6v的信号使电子束在垂直方向偏转6格

耦合

  耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。

  DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC和:DC)都会影响示波器的波形显示。

  AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。示波器的低频截止频率典型值为10Hz,见图4。

图4 说明AC及DC耦合、输入接地以及50Ω输入阻抗功能选择的简化输入电路

  和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。

输入阻抗

  多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。

  有些信号来自50Ω输出阻搞的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。
位置

  垂直位置控制或POS控制机构控制扫迹在屏幕Y轴的位置。在输入耦合控制中选择接地,这时就将输入信号断开,这样就可以找到地电平的位置。在更先进的示波器上设有单独的地电平指示器,它可以让用户能连续地获得波形的参考电平。


动态范围

  动态范围就是示波器能够不失真地显示信号的最大幅值,在此信号幅值下只要调节示波器的垂直位置仍能观察到波形的全部。对于Fluke公司的示波器来说,动态范围的典型值为24路(3个屏幕)
相加和反向


  简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。

  从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。

  由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。


交替和断续


  示波器CRT本身一次只能显示一条扫迹。然而,在很多示波器应用中,常常要进行信号的比较,例如,研究输入/输出信号间的关系,或者一个系统对信号的延迟等。这就要求示波器实际上能同时显示不只一个信号。


  为了达到这一目的,可以用两种办法来控制电子束:
  1.可以交替地画完一条扫迹,再画另一条扫迹。这种方法称为交替模式,或简称为ALT模式。

  2.可以在两条扫迹之间迅速的进行开关或斩波切换,从而分段的画出两条扫迹。这称为断续模式或CHOP模式。其结果是在一次扫描的时间里一段接一段的画出两条扫迹。


  断续模式适合于在低时基速率下显示低频率信号,因为这时斩波器开关能快速进行切换。

  交替模式适合于需要使用较快时基设置的高频率信号的显示。本书中我们用作示例的示波器在不同的扫描速度下能自动地ALT或CHOP模式以给出最好的显示效果。用户也可以手动选择ALT或CHOP模式以适合特殊信号的需求。
带宽

  示波器最生根的技术指标就是带宽。示波器的带宽表明了该示波器垂直系统的频率响应。示波器的带宽定义为示波器在屏幕上能以不低于真实信号3dB的幅度来显示信号的最高频率。

  —3dB点的频率就是示波器所显示的信号幅度“Vdisp”为示波器输入端真实信号值“Vinput”的71%时的信号频率,如下式所示:设:

  dB(伏)=20log(电压比)
  —3Db=20log(Vdisp/Vinput)
  —0.15=log(Vdisp/Vinput)
  10-0.15=Vdisp/Vinput
  Vdisp=0.7Vinput
  图5表示出一个100MHz示波器的典型频率响应曲线。

图5 一台典型为100MHz示波器的频率响应曲线(简化的曲线和实际的曲线)
  出于现实的理由,通常把带宽想象成为叔响曲线一直平坦延伸至其截止频率,然后从该频率以-20dB/+倍频程的斜率下降。当然,这是一种简化的考虑。实际上,放大器的灵敏度从较低的频率就开始下降,百在其截止频率达到-3dB。图5中中同时给出了简化的频率响应曲线和实际的频率响应曲线。

带宽限制器


  使用带宽限制器可以把通常带宽在100MHz以上的宽带示波器的频带减小到20MHz的典型值。这样就降低了噪声电平和干扰,这对于进行高灵敏度的测量是非常有用的。


上升时间

  上升时间直接和带宽有关。上升时间通常规定为信号从其稳态最大值的10%到90%所用的时间。

  上升时间是一个示波器从理论上来说能够显示的最快的瞬变的时间。示波器的高频响应曲线是经过认真安排的。这就保证了具有高谐波含量的信号,如方波,能够在屏幕上精确的再现。如果频响曲线下降太快,则在信号的快速上升沿上就会发生振铃现象。如果频响曲线下降太慢,即在频响曲线上下降开始得过早,则示波器总的高频响应就受到影响,使得方波失去“方形”特性。

  对于各种通用示波器来说,其高频响应曲线是类似的。从该曲线我们可以得到一个示波器带宽和上升时间的简单关系公式。此公式为:
  tr(s)=0.35/BW(Hz)
  对于高频示波器来说,这个公式可以表示为:
  tr(ns)=350/BW(MHz)
  对于一个100MHz的示波器来说,上升时间为3.5(ns=纳秒10-9秒)
  在示波器的标尺上刻有标明0%和100%的专门的线,用来进行上升时间的测量。测量时我们先用VAR灵敏度控制机构将被测认号的顶部和底部分别和标有0%和100%的线对齐。

  然后找出信号和标尺上标有10%和90%的两条线的交点。这样,上升时间就可以从这两个交点沿X轴方向的时间间隔读出来。

  要想测量一台示波器的上升时间,我们使用与上述相同的方法,只是要求测试信号的上升时间应当比该示波器的上升时间短得多。为获得2%的测量误差,测试信号的上升时间至少应小于示波器上升时间的五分之一。示波器上显示的上升时间应当是示波器上升时间和信号上升时间和组合函数。



 
产品推荐
相关技术文章
仪器仪表分类推荐
仪器仪表   里氏硬度计-硬度仪   超声波测厚仪-漆膜测厚仪   生化培养箱-恒温培养箱   真空烘箱-电烘箱-热风循环烘箱   手持式激光测距仪   罗维朋比色计-测色仪-色差计   电力质量分析仪-电能质量分析仪   有毒性气体检测仪-有害气体报警仪   农药残毒快速检测仪   漏电断路器测试仪   防辐射检测仪-电磁辐射测试仪   数字万用表   钳型表-钳形表-漏电流钳表   高压数字兆欧表   微电阻计-微欧计-微欧表   声级计-音量计-噪音计   辐照计-照度表-照度计-照度仪   红外成像仪/热像仪   数字示波器   红外线测温仪-测温表   分析天平-电子天平   木材水分测试仪-水份测定仪   硫化氢检测仪/H2S检测仪   烟气分析仪-烟气检测仪   PH计-酸碱度计-ORP测试仪   超声波探伤仪   绝缘电阻测试仪-绝缘测试仪   波形存储记录仪   氧气检测仪/O2测试仪   多种气体检测仪-复合气体测试仪   SF6气体检测仪   液体流量计   地下管线探测仪   地下金属探测仪   探地雷达   燃气管道泄漏检测仪   电力电缆故障定位仪   硬度计   测厚仪   探伤仪   电阻率测试仪   万用表   直流稳压电源   电池测试仪   便携式红外测温仪   电压表与功率表   蓄电池测试仪器   绝缘电阻测试仪/兆欧表   水质安全分析仪   酸度计   电导率仪   多参数水质分析仪   溶解氧仪   离子浓度计   水质安全检测仪   可燃气体检测   氧气检测仪   有毒气体检测仪   甲醛检测仪   二氧化碳检测仪   复合气体检测仪  
 
首页
制造商
设为主页
售后服务
网络部
友情连接
CopyRight 2013 版权所有 就是要仪器 宏胜集团北京中仪伟信科技有限公司
 
京ICP备09060824号-10    京公网安备11010602004306号-8
网站地图
导航图一
导航图二
导航图三
导航图四
导航图五
导航图六
map
产品导航1
产品导航2
产品导航3
产品导航4
产品导航5
产品导航6
产品导航7
产品导航8
产品导航9
产品导航10
产品导航11
产品导航12
产品导航13